Plasmas in Liquids: What do we know and what can we still learn?

Peter Bruggeman

pbruggem@umn.edu

Center for Predictive Control of Plasma Kinetics: Multi Phase and	
Bounded Systems	Department of Energy Plasma Science Center

DOE Plasma Science Center Control of Plasma Kinetics

Science Engineering

High Temperature and Plasma Laboratory

HTPL- September 2017

Acknowledgements

<u>Contributors in my</u> <u>group to this</u> <u>presentation:</u>

- S. Kondeti
- Y. Luo
- Dr. M. Simeni
- Prof. H. Taghvaei
- Dr. S. Yatom

Collaborators

Bruggeman Group – October 2018

- C. Phan, R. Hunter, J. Granick (UMN)
- A. Lietz and M. Kushner (University of Michigan)
- K. Wende, H. Jablonowski (INP), D. Schram (TU/e)

Science Engineering

Plasma-liquid interactions

Science Engineering

Are plasmas in liquids are special?

	water	air
breakdown field	1 MV/cm	30 kV/cm
conductivity	conductive	non-conductive
dielectric constant	ε = 80	ε = 1
density ($2.5 \times 10^{25} \text{m}^{-3}$)	10 ³	1
Life time free electron	1 ps	1 - 20 ns
phase change	yes	no
phases	often dissolved gases	homogeneous
polarization	polar	non-polar

Science & Engineering

Overview

- Introduction
 - Applications and "The unknowns"
- Discharge initiation
- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles
- Gas phase H₂O vapor kinetics
- Plasma-liquid interface and transport
- Liquid phase analyses
- Conclusions

Overview

Introduction

- Applications and "The unknowns"
- Discharge initiation
- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles
- Gas phase H₂O vapor kinetics
- Plasma-liquid interface and transport
- Liquid phase analyses
- Conclusions

Simplified idea about plasmas in liquids

Non-selective oxidizing specie as OH often required.

 $2 O_3 + H_2 O \xrightarrow{OH^-} OH + O_2 + HO_2 \cdot Only for trace compounds!$

- powerful (non-selective) oxidizing species
- UV
- shockwaves

destruction of toxic organic compounds \rightarrow

decontamination / sterilisation / purification \rightarrow

COLLEGE OI Engineering Science

University of Minnesota Driven to Discover™

Advanced Oxidation

Processes

Water treatment with plasmas

There exist successful applications for thermal arcs in water treatment.

Grabowski, van Veldhuizen et al PCPP, **26**, 1 (2006) Dang, Denat et al Eur. Phys. J. Appl. Phys. **47**, 22818 (2009)

Science Engineering

Degradation of emerging contaminants in wastewater and drinking water

Process	Contaminant	Treatment costs (\$/m³)
Activated	PFOA	0.39
carbon	PFOS	0.45
Discuss	PFOA	0.13
Plasma	PFOS	0.07
Carraharia	PFOA	13.5
Sonolysis	PFOS	32.7

PFOA=Perfluorooctanoic acid PFOS=Perfluorooctanesulfonic acid

- EPA-regulated cancer-causing compounds are too stable for decomposition by conventional water treatments or by advanced oxidation processes using OH radicals.
- Plasmas produce aqueous electrons and H radicals which are capable of chemically reducing these compounds.
- Plasma water treatment is competitive with the leading conventional and alternative technologies.

Selma Mededovic Thagard, Chemical and Biomolecular Engineering, Clarkson University

Established medical applications

- Blood coagulation (hemostasis)
- Tissue ablation

⁽Erbe USA Inc.)

(Arthrocare Inc.)

Science & Engineering

Decontamination

Sterilization of liquids (water, juices,...)

Fig. 9. Cell survival ratio and H_2O_2 concentration in distilled water as a function of total pulse energy applied (pulse voltage: 19 kV).

Sato M et al (1996) IEEE Trans. Ind. Appl. 32 (1) 1996

Algae treatment

group of prof. H. Akiyama, Kumamoto University

Science & Engineering

Material synthesis and processing

Plasma-polishing of metallic surfaces

Beckmann-Institut für Technologieentwicklung

Material synthesis (nanomaterials)

Takai et al , JVSTA 26 (4) (2008) - Belmonte et al

Image: IBC Coatings Technologies Ltd - Yerokhin, Henrion

Science Engineering

UNIVERSITY OF MINNESOTA Driven to Discoversm

Plasma Electrolytic Oxidation

Surface treatment - Polymer treatment

b) electrode barrier bubbles with plasma inside water bubbles with plasma

Photoresist etching (high speed ~ 100 nm/s) Polymer surface functionalization

with high yield and selectivity water is energy moderator

Ishijima et al, APL, 103 (2013) 142101

Science & Engineering

Friedrich et al, PPP, 5 (2008) 407-423

High voltage switching

Switches in dielectric liquids (water, oils) Importance of breakdown strength and recovery after breakdown

Schoenbach et al PSST 17 (2008) 024010

Science & Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Increasing complexity: engineering approach

From plasma processes to applications

What to know to control applications?

- Plasma-induced reactivity
 - Plasma kinetics
 - Reactivity transport (interfacial and convective)
 - Liquid phase chemistry
- Electrical breakdown
- Mechanics/fluid dynamics
 - Shockwave dynamics
 - Plasma-electrode/substrate interaction
 - Heat release

'The Unkowns'

IOP PUBLISHING

J. Phys. D: Appl. Phys. 45 (2012) 253001 (37pp)

JOURNAL OF PHYSICS D: APPLIED PHYSICS doi:10.1088/0022-3727/45/25/253001

REVIEW ARTICLE

The 2012 Plasma Roadmap

OPEN ACCESS IOP Publishing
J. Phys. D: Appl. Phys. 50 (2017) 323001 (46pp)

Journal of Physics D: Applied Physics https://doi.org/10.1088/1361-6463/aa76/5

Topical Review

The 2017 Plasma Roadmap: Low temperature plasma science and technology

IOP Publishing

Plasma Sources Sci. Technol. 25 (2016) 053002 (59pp)

Plasma Sources Science and Technology doi:10.1088/0963-0252/25/5/053002

Review

Plasma–liquid interactions: a review and roadmap

Published Online: 25 July 2018 Accepted: May 2018

Plasma physics of liquids–A focused review

Applied Physics Reviews 5, 031103 (2018); https://doi.org/10.1063/1.5020511

D Patrick Vanraes and D Annemie Bogaerts

Hide Affiliations

PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium

Understanding (and controlling)

- breakdown processes and mechanisms in liquids
- physical and chemical processes occurring at the plasma– liquid interface

Science Engineering

Overview

- Introduction
 - Applications and "The unknowns"

Discharge initiation

- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles
- Gas phase H₂O vapor kinetics
- Plasma-liquid interface and transport
- Liquid phase analyses
- Conclusions

Discharges preceded by evaporation

AC discharge in saline

capillary discharge

constriction of pre-discharge current \rightarrow strong thermal effects (bubble formation, localized boiling) \rightarrow breakdown

Science Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Discharges in pre-existing micro-bubbles

When bubbles are not attached to the cathode no discharge formation is observed! Indication for the need of electron injection in the bubble from the cathode.

Science & Engineering

Breakdown in conductive liquids (µs pulse)?

- Breakdown time correlations with time needed to dissipate enough energy to vaporize locally the liquid.
- Input power is in good agreement with the power required to vaporize the liquid contained within the volume of the streamers.

Olson and Sutton J. Acoust. Soc. Am. 94 2226–31 (1993)

Lisitsyn, Akiyama et al, IEEE Trans. Dielectr. Electr. Insul. 6 351-6 (1999)

Science Engineering

Plasma formation in dense liquid media

- in liquid Xe, Ar, He, ... directly in liquid.
- life time of electron in water ~ 1 ps (hydrated electron)
- nanosecond HV pulse no time for phase change
- many mechanisms proposed...

O Lesaint, J. Phys. D: Appl. J. Phys.D: Appl. Phys. 49 (2016) 144001

Science & Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

From gaseous to liquid Ar?

Bonifaci, Denat and V Atrazhev, 1997 J. Phys. D: Appl. Phys. 30 2717

In the limit of very high neutral densities, everything which is excited gets ionized.

Breakdown strength?

$$E_{\rm a} = \alpha 0.23 A^{-0.058} t^{-1/3}$$

Depends on:

- pulse duration (t)
- electrode area (A)

Ecton – explosive emission centers (micro-explosions of imperfections/microprotrusions at the cathode)

How smooth can an electrode be? Preferentially breakdown at anode.

Schoenbach, Kolb et al, Plasma Sources Sci. Technol. **17** (2008) 024010 Mesyats G A 1995 Phys.—Usp. **38** 567–91

Science & Engineering

Local electric field enhancement?

- Reduction of the dielectric constant for high fields (is important)
- Field measurement (the Kerr effect, by interferometery $n_{par} n_{perp} \sim E^2$)
- Positive feedback for E field due to reduction of ε for E>1MV/cm

Schoenbach, Kolb et al, Plasma Sources Sci. Technol. **17** (2008) 024010 Schlieren image: Fridman group

Bubble formation in ns pulsed discharges?

- Clearly zone with lower refractive index observed bubble
- > 4 × 10⁸ V/m → dipole alignment can lead to refractive index change

I. Marinov et al PSST, 22, 042001 (2013), J. Kolb, IEEE PPS, 2015

COLLEGE OF **S**Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Direct discharges in water possible?

Is this a proof of a discharge in water without phase change?

Science Engineering

Electrostriction?

$$P_{\text{total}} = P_{\text{hydr}} - \rho \varepsilon_0 \left(\frac{\partial \varepsilon}{\partial \rho}\right) E^2$$

- a stretching tension occurs in the fluid → nanopores
- Liquid inertia does not lead to recovery on ns timescale

Secondary cavitation could lead to the appearance of chains of nanopores, aligned along the electric field lines, in which the breakdown may develop.

M. Pekker and M.N. Shneider J. Phys.D 48 (2015) 424009

Science & Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

The view of Nikuradse (1934) and Kolb (2008)

'It is difficult to compare the results of different authors, since their experimental conditions are entirely different. [...] A comprehensive theory does not exist. Each one only deals with a fraction of the causes, which could lead to breakdown. Therefore they will be able to exist beside each other until a general theory can be developed.'

(A Nikuradse **1934** *Das flussige Dielektrikum (Berlin: Verlag Julius* Springer) p 165, translated from German)

Recited in:

J F Kolb, R P Joshi, S Xiao and K H Schoenbach, Streamers in water and other dielectric liquids, J. Phys. D: Appl. Phys. 41 (2008) 234007

... or we can directly measure the phenomenon without assumptions in the interpretation of the data.

Science Engineering

Overview

- Introduction
 - Applications and "The unknowns"
- Discharge initiation
- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles
- Gas phase H₂O vapor kinetics
- Plasma-liquid interface and transport
- Liquid phase analyses
- Conclusions

n_e of filamentary H₂O discharges

H_βBalmer line is very reliable but *p* and T_g needs to be know!

(Bruggeman et al. J. Phys. D **42** 053001, 2009 (Bruggeman et al PSST **18**, 025017, 2009

$\Delta\lambda_{Stark} \propto n_e^{\frac{2}{3}}$

Filamentary (streamer like)	Strongly driven discharges in bubbles	Direct liquid
10 ²⁰ -10 ²¹ m⁻³	10 ²¹ -10 ²³ m ⁻³	10 ²³ -10 ²⁵ m ⁻³ (pressure broadening!!!)

Science & Engineering

Gas temperature: OH(A-X) emission

Broida and Krane, Phys Rev 89 (1953)

Bruggeman et al, J. Phys D 41 (2008)

Rotational distribution is an image of the formation process and does not represent the gas temperature !!

Science Engineering

Exotic discharges in liquid (water)

high electron density (10²⁴-10²⁵ m⁻³)

2-3ns pressure pulses of 2-3GPa

(all properties deduced from indirect measurements)

Bruggeman, J. Phys. D 2009 An et al JAP 101, 053302, 2007 PhD thesis Paul Ceccato Marinov et al, J. Phys. D: Appl. Phys. 47 (2014) 224017

Science & Engineering

correlated plasma ?? Coupling parameter:

$$\Gamma = \frac{E_{coulomb}}{kT_e} \approx \Lambda^{-3/2} \sim 1$$

Broad band emission

Studied in detail in arcs and sonoluminescence

- Planck emission (optical thick plasma)
- Free-free, free-bound and H₂ continuum emission

Burnett et al, JQSRT 71 (2001) 215-223 Simek et al, Plasma Sources Sci. Technol. 26 (2017) 07LT01

Science & Engineering
Discharge in bubbles: surface discharges

Surface hugging effect increases with $\epsilon\uparrow$ and $\sigma\uparrow$ (confirmed by modeling)

Babaeva and Kushner J.Phys.D **42**, 13, 132003 (2009) Bruggeman et al PSST, **18**, 025017 (2009) Tachibana et al, PSST, **20**, 034005 (2011)

Science & Engineering

MIN

Overview of typical plasma properties

				Radical		Shock
Plasma	$T_{g}(K)$	$T_{\rm e} ({\rm eV})$	$n_{\rm e} ({\rm m}^{-3})$	Densities	UV	Waves
Corona-like in liquid water	1,500-7,000	1-10	1021-1025	+	+	+
Capillary/diaphragm in liquid water	500-3,000	2-10	$10^{20} - 10^{21}$	+	+	(+)
Diffuse glow-like	300-1,000	1 - 4	1016-1019	+	+	-
Filamentary DBD-like	300-500	2-5	$10^{20} - 10^{21}$	+	++	-
Pulsed corona (gas phase)	300-500	2-10	$10^{20} - 10^{21}$	+	+	-
Spark*	500-5,000	1-3	1020-1024	++	++	+++
MW	500-5,000	1-3	1020-1022	++	++	-
Arcs	3,000-20,000	~1	$10^{23} - 10^{25}$	+++	++++	++++
Plasma jets (cold)	300-600	1 - 10	1017-1021	+	+	-
Gliding arc	2,500-10,000	1-2	1017-1019 (averaged)	++	++	-

For most discharges in water – electron density is high!

High density hot plasma typically produce significant UV.

Bruggeman and Locke, Low Temperature Plasma Technology, 2012

Science Engineering

Overview

- Introduction
 - Applications and "The unknowns"
- Discharge initiation
- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles

(Gas phase) H₂O vapor kinetics

- Plasma-liquid interface and transport
- Liquid phase analyses
- Conclusions

He-H₂O chemistry reaction set

He-H₂O reaction set:

Liu, Bruggeman, Iza, Rong, Kong, Plasma Sources Sci. Technol. 19 (2010) 025018

- 46 species and 577 reactions
- Global model
- Reduced plasma chemistry models (1/10)
- Diffuse RF glow discharge

n _e /n _g	10 ⁻⁷ -10 ⁻⁸
Tg	300 - 400 K
T _e	1-3 eV
n _e	10 ¹⁷ -10 ¹⁸ m ⁻³
gas	He + 0.1-1% H ₂ O
Freq.	13.56 MHz

Validation of He-H₂O chemistry

EXPERIMENTALLY

Plasma dissipated power

Driven to Discover⁵⁴

- Gas temperature
- OH, H_2O_2 density

Density (cm ⁻³)	Experiment	1 D fluid model
n _{H202}	1.3×10^{14}	3.2×10^{14}
n _{OH}	$0.7 - 1.5 imes 10^{14}$	$2.2 imes 10^{14}$

 n_{OH} and N_{H2O2} correspond within accuracy of measurement and reaction rates and experiment

Vasko, Liu, van Veldhuizen, Iza, Bruggeman, PCPP (2014)

Ion hydration

Vibrational excitation in water

<u>V-T relaxation rate</u> is very high ($k_{VT} \sim 10^{-18} \text{ m}^3/\text{s}$)

 \rightarrow vibrational induced dissociation can only be possible when:

 $n_e k_{eV}(T_e) > n_g k_{VT}(T_g)$ or $n_e/n_g > 10^{-4} \rightarrow DR$ pathway \rightarrow contributes to delayed gas heating

Science Engineering

High density H₂O plasmas: OH formation

- Gas temperature is often overestimated !!!
- Plasmas with large T_g have high ionization degree !
- Dissociative
 recombination rate is very
 fast (k ~ 10⁻¹³ m³/s)
 - 1 exception is perhaps O₂ containing plasmas

In most non-thermal plasmas used in applications thermal dissociation can at most only become as important as dissociative recombination even for T_{gas} > 3000 K

Bruggeman and Schram, PSST 2010 19 045025

Science Engineering

High n_e density filaments: Ar-H₂O kinetics

- Nanosecond pulsed discharge
- LIF AND TaLIF for H and OH densities + 0-D kinetics modeling (Global Kin)

RESEARCH QUESTION:

What is the dominant kinetics and most abundant radicals in high density water containing discharges?

Luo, Lietz, Yatom, Kushner, Bruggeman (submitted)

Validation of 0-D model with H and OH (Ta)LIF

- Absolute densities predicted well by model
- n_H >> n_{OH}
- High dissociation degree
- Measured H and OH densities well represented by model

Luo, Lietz, Yatom, Kushner, Bruggeman (submitted)

Science Engineering

Effect of energy deposition (Ar + 0.1% H₂O)

- At high energies, O and H are dominant radicals
- Decomposition at higher energies due: $e^- + OH \rightarrow e^- + H + O_{e}$

Luo, Lietz, Yatom, Kushner, Bruggeman (submitted)

UNIVERSITY OF MINNESOTA

Driven to Discover^{ss}

Science Engineering

H_2O_2 production in pulsed Ar + xx % H_2O

- Low energy, pure water nanosecond pulsed discharge is most efficient source of H₂O₂ production.
- $\eta_{H_2O_2} = \frac{n_{H_2O_2}}{n_{H_2O_2} + n_{H_2} + n_{O_2}}$
- High energy discharge produce H₂, O₂ (and H₂O)!

Science & Engineering

H₂O₂ production

	Input	Energy efficiency (g/kWh)	
Spark/pulsed corona	Liquid water	0.1-3.64	
Discharges in bubbles	Air/ Ar / O ₂ in liquid H ₂ O	0.4-8.4	$2H_2O \rightarrow H_2O_2 + H_2$
Gas phase corona / DBD	Air / Ar + water surface	0.04-5	
MW	Steam	24	$\Delta H = 3.2 \text{ eV/molec}$
DBD	Humid gas	1.14-1.7	= 400 g/kWh
Gliding arc	Water droplets (in Ar)	0.57-80	
Electron beam		8.9	
Vacuum UV	Vapor or liquid water	13-33	80 g/kWh
electrolysis		112.4-227.3	~ 16 eV/molec

Bruggeman and Locke, Assessment of potential applications of plasma with water, Low temperature plasma technology methods and applications Eds Chu and Lu

Science & Engineering

Why are discharges in liquids ineffective?

Remember: phenol decomposition efficiency: Gas phase streamer > > streamer-like liquid

Losses	Liquid discharge	Gas phase discharge
Evaporation	Major	Minimal
Transport	Minimal	Major (interfacial recombination)
Radical-radical recombination	Major	Minimal (low energy loss)

- Energy density is too large in liquid discharges leading to larger radical densities.
- Control of liquid discharge is less straightforward as dynamics is on sub-nanosecond time scale while in gas phase ~ 100ns

Science Engineering

Overview

- Introduction
 - Applications and "The unknowns"
- Discharge initiation
- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles
- Gas phase H₂O vapor kinetics
- Plasma-liquid interface and transport
- Liquid phase analyses
- Conclusions

Plasma-liquid interactions (1)

Plasma-liquid interactions (2)

PLASMA GAS PHASE CHEMISTRY

P. Bruggeman et al PSST 2016

Example H_2O_2 production

Many different pathways – interfacial reactions !!!

Science Engineering

Production of H₂O₂ by excimer radiation

Significant amount of H₂O₂ produced by Ar excimer radiation (125 nm) Wende, Bruggeman et al

Science Engineering

Surface and bulk OH radicals

Chen et al (2014) Plasma Chem. Plasma Process. 34: 403 – 441.

Science <u>Engineering</u>

COLLEGE OF

- OH lifetime ~ few µs
- Penetration depth < 100 µm (Not enhanced by convection)
- Bulk OH production:
 - Fenton's reaction: $Fe^{2^+} + H_2O_2 \rightarrow Fe^{3^+} + OH^- + OH^-$
 - Ozone decomposition: $2 O_3 + H_2 O \xrightarrow{OH^-} OH^- + O_2 + HO_2^-$
 - UV decomposition

 $H_2O_2 + hv \rightarrow 2 \text{ OH}$.

```
O_3 + hv \rightarrow O_2 + O(^1D)O(^1D) + H_2O \rightarrow 2 OH
```


Crystal violet - spatial decolorization

Time (minutes)

- O₃-induced decolorization occurs homogeneously suggesting O₃ is transported through complete solution
- Plasma-induced decolorization of CV is strongly inhomogeneous suggesting short-lived species
- Convection of dye is important

Taghvaei, Kondeti et al (in preparation)

Science & Engineering

Crystal violet - decomposition rate

- $K_{\text{obs,touching}}$ within 50 % of $K_{\text{obs non-touching}}$ while orders of magnitude different radical fluxes!
- $K_{\rm ob}^{-1} \sim 100 300 \, {\rm s} \, {\rm similar}$ to time it takes to make one full vortex filling the upper 1/3 of the cuvette yielding (~ 30-120 s)

Observed crystal violet decomposition rate: 0.2 -0.45 min⁻¹

Reactivity is highly transport limited Taghvaei, Kondeti et al (in preparation)

COLLEGE OF Engineering Science

Crystal violet - mechanism

convection is of key importance for both O₃ and OH induced reactions (however different mechanism!)

Science Engineering

Spark more effective than streamer discharge

- Phenol decomposition: $\eta_{\text{streamer}} << \eta_{\text{spark}}$
- E coli inactivation in H₂O

Plasma	D-value* (J/ml)	Liquid conductivity (mS/cm)	Initial bacterial density (CFU/ml)
Pulsed arc in water	18.7		107
DBD in air (bubbling)	0.29		
Pulsed corona in water	18-45	0.1	106-107
Capillary discharge in water	5.4	0.9 NaCl in H ₂ O	107
PEF	<5	13	105
Streamers in air bubbles	13		105-106
Pulsed corona in air	0.1	0.9	107-108
Spark discharges in water	0.1-0.4	0.2	10 ⁴ -10 ⁶

Why?

- Stronger UV
- Shock waves (+ enhancement transport)

Bruggeman and Locke, Assessment of potential applications of plasma with water, in Low temperature plasma technology methods and applications Eds Chu and Lu

Science Engineering

Bubble dynamics (1)

Bubble dynamics (2)

Droplet ejection, break up and surface waves

Electrical induced (Kelvin`s equation)

 $\omega^2 = \frac{\sigma k^3}{\rho} + gk - \frac{\varepsilon_0 E^2 k^2}{\rho}$

Sommers et al JPD 44 (2011) 082001 Tachibana et al, PSST, 20 (2011) 034005

Science & Engineering

Direct liquid discharges

Nanosecond pulse with reflections

- Shock wave due to large energy injection near electrode
- Shock wave generated by plasma filaments formed in water

Marinov et al 2013 J. Phys. D: Appl. Phys. 46 464013

Science Engineering

Direct liquid discharges

- Mach-Zehnder interferometry and Schlieren imaging
- Pressures up to 2 GPa (short 2-3 ns)
- stepwise propagation (polarity dependent) and reilluminations

An et al 2007 JAP, 1010, 053302

Science & Engineering

Overview

- Introduction
 - Applications and "The unknowns"
- Discharge initiation
- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles
- Gas phase H₂O vapor kinetics
- Plasma-liquid interface and transport
- Liquid phase chemistry
- Conclusions

Liquid phase analysis: challenging!

"Established methods (of detection of radical species in liquids) often lack the required selectivity or sensitivity or cannot be performed *in situ* with a sufficient spatial or temporal resolution."

2017 Plasma Roadmap (Diagnostics section)

Rumbach et al., Nature Comm. 6, 7248 (2015)

Science Engineering

Example – plasma-liquid interaction

Inactivation only occurs for Ar plasma in contact with the solution suggestion short-lived species induced inactivation

Kondeti et al., Free Radical Biology and Medicine. 124, 275-287 (2018)

Science & Engineering

Role of short-lived species

Only direct treatment inactivates
 Presence of OH, O₂⁻ in the solution confirmed by ESR.

Kondeti et al., Free Radical Biology and Medicine. 124, 275-287 (2018)

Science & Engineering

Scavengers: Ar plasma – H₂O vs saline

➢ Both OH and O₂⁻ effect in H₂O (OH reacts with Cl⁻ → Cl⁻ is a scavenger for OH).
Kondeti et al., Free Radical Biology and Medicine. 124, 275-287 (2018)

Science Engineering

Summary of plasma bacteria inactivation

- Convection important in inactivation of (planktonic) bacteria.
- Role of OH and O₂⁻
 - O₂⁻ formed by e⁻ attachment to dissolved O₂.
 - OH transfer of gas phase species to liquid or interfacial generation)

 Significant effect of solution on inactivation (NaCl)

Kondeti et al., Free Radical Biology and Medicine. 124, 275-287 (2018)

Scavengers are never completely selective

Table 2. Reaction rates of L-histidine with some major components produced by the plasma [230].

Reacting species	Reaction rate $(M^{-1}s^{-1})$		
¹ O ₂ *	$3.2-9 \times 10^{7}$		
$e_{(aq)}^{-2}$	6×10^{7}		
•ОН	4.8×10^{9}		
O ₃	3.9×10^{3}		
$O_2^{\bullet-}$	<1		
H•	2.3×10^{8}		
HO ₂ •	$<2.3 \times 10^{8}$		

- Example of L-histidine (considered scavenger of ¹O₂^{*})
- Effects of transport and concentration gradients can be important (similar for spin traps used in EPR, colorimetric probes etc.). Bruggeman et al 2016 Plasma Sources Sci. Technol. 25 053002

Science & Engineering

Overview

- Introduction
 - Applications and "The unknowns"
- Discharge initiation
- Discharge properties
 - Direct discharges in liquid
 - Discharges in bubbles
- Gas phase H₂O vapor kinetics
- Plasma-liquid interface and transport
- Liquid phase chemistry
- Conclusions

Conclusions (1)

- Major advances in the last 10 years, particularly in modeling, provided us with an increased but still incomplete understanding of discharges in liquids and bubbles.
- Challenges preventing a full understanding of breakdown in liquids relate to
 - Limited diagnostics (Schlieren, interferometry, emission)
 - Sub ns time scales stochastic nature
 - Key processes occur on sub-micrometer length scale
 - Lack of highly controlled experiments (pure liquids,...)
 - Model limitations
 - Lack of general theory and 'dense gas approximation'

Science & Engineering

Conclusions (2)

- The plasma-liquid interface has unique chemical and physical conditions that provide many interesting scientific questions with a direct benefit for society.
- **Controlling plasma processes** might be more about (interfacial) **transport** than optimizing plasma kinetics.
- How do you probe an interfacial plasma-liquid layer of a few µm time and spatially resolved?
- Models with a two-way coupling of plasma kinetics in multi-phase plasmas, including evaporation, charging, deformation, liquid interface dynamics and liquid phase convection have yet to be fully developed.

Science Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™