

<u>Cours</u> Microplasmas: physique et applications

Claudia Lazzaroni

Laboratoire des Sciences des Procédés et des Matériaux,

Université Paris 13, Villetaneuse, France

Journées Réseau Plasmas Froids 2018 – La Rochelle

Outline of the lecture

- Microplasmas: definition, interest and drawback
- Microplasma configurations
- Experimental characterization Parameters of interest: T_g , n_e , EEDF, reactive species density
- Microplasma modeling PIC simulation, fluid model, global model
- Applications of microplasmas: material synthesis ₂ and environment

Microplasmas: definition/applications

- -S
- Microplasma = plasma with submillimeter scale
- First works in the mid-90's (Schoenbach et al.)
- High pressure stable glow discharge

(or pressure for a fixed electrode separation)

 Various applications: sterilization, treatment of human skin, light sources, micro-propulsion, synthesis of nanomaterials..

Interest and drawback of microplasmas

- Stable glow discharge at high pressure (intermediate to atmospheric pressure)
- Production of high density of reactive species → interesting for various applications such as lighting, material synthesis or medicine

But working surfaces and volumes are weak..

Solution: microplasmas arranged in arrays or third electrode in the case of MHCD (→ MCSD)

Microplasma configurations (1)

• Micro Hollow Cathode Discharge (MHCD, 1996, USA):

Schoenbach et al. APL **68** (1996) 13 Boeuf et al. APL **86** (2005) 071501 Aubert et al. PSST **16** (2007) 23

• Capillarity plasma electrode Discharge (CPED, 1997, USA):

Microplasma configurations (2)

• Dielectric Barrier Discharge Microplasma (DBD,USA)

• Atmospheric pressure plasma jet (APPJ, Bochum/Belfast):

- RF excitation
- Electrode spacing : 1 mm

V. Schulz-von der Gathen et al., J. Phys. D 41 (2008) 194004

Increasing the plasma surface / volume

• Array of microplasmas:

Eden et al. JPhysD **38** (2005) 1644

CBL 50mbar Ar 19*800µm

Martin et al. ICPIG 2012

Si/SiO₂/Ni MHCD 350mbar He 16*150µm

Felix et al. PSST **25** (2016) 025021

Eden et al. JAP **85** (1999) 2075 Makasheva et al. PPCF **49** (2007) B233

Santos Sousa et al. APL **97** (2010) 141502

- Diagnostics on microplasmas are challenging because of their small size
- Optical diagnostic methods: emission and absorption spectroscopy, interferometry, Thomson scattering

T_g measurement by OES

- S
- Measurement of the spectrum of the first/second positive band of N_2 and comparison to a simulated spectrum (small admixture of N_2 needed if the gas mixture does not contain N_2)
- Example: Atmospheric-pressure air µdischarge

between two electrodes (2nd syst. positive)

Staak et al. PSST **14** (2005) 700

For a current of 0.4 mA: T_{rot} = 700 K and T_{vib} = 5000 K

T_g measurement by OES

- -SM
- Temperature in microdischarges operating in noble gases and/or lower pressure is considerably lower
- Example: MHCD discharge in Ar at 1 mA and 100 Torr (1st system positive $B^3\Pi_g \rightarrow A^3\Sigma_u$)

Radial dependence of T_g constant Increase of T_g with the discharge current

T_g measurement by absorption spectroscopy

- High-pressure dc glow discharge based on micro-structuredelectrode arrays in Ar at 0.5 mA (P = 50 to 400 mbar)
- Diode laser atomic absorption spectroscopy: Doppler broadening

n_e measurement by OES

- DC MHCD at atmospheric pressure in Ar
 Moselhy et al. JPhysD 36 (2003) 2922
 Moselhy et al. JPhysD 36 (2003) 2922
- Small admixture of H_2 to use the Stark broadening of the hydrogen Balmer- β line at 486.1 nm

 n_e in the pulse mode (600V, 10 ns, 10 mA) = 5.10¹⁶ cm⁻³

n_e measurement by OES

- 3 nanosecond (2.46 kV, 10 kHz) pulsed atmospheric pressure argon microdischarge. Time-resolved OES
- Stark broadening of the 4p-4s Ar line at 696.54 nm

n_e measurement by Laser Thomson scattering

- Microdischarge between plane parallel electrodes (600 μ m gap) in argon at intermediate pressure (300-700 Torr) for a current of 50 mA
- Use of the beam of a pulsed frequency-doubled Nd:YLF laser ($\lambda = 526.5 \text{ nm}$, f = 3 kHz, $\tau = 100 \text{ ns}$, P = 6W)

Belostotskiy et al. APL 92 (2008) 221507

Electron velocity distribution function

Schregel et al. PSST 25 (2016) 054003

- 0.7 bar He microdischarge between planar electrodes (Mo) separated by a gap of 0.95 mm; 150 ns pulses with amplitude of 1 to 2 kV and f = 5 kHz
- Thomsonscattering(elasticscattering on free electrons) \rightarrow eedf ina range of energies up to 12 eV
- Maxwellian eedf <-> $T_e = 3.5 \text{ eV}$ at 100ns

Reactive species density: n_o

- Measurement of absolute atomic oxygen density by TALIF in a RF-APPJ in ${\rm He}/{\rm O}_2$

Reactive species density: n_{02*}

Measurement of absolute O_2^* density by infrared optical emission spectroscopy in a RF-APPJ in He/O₂: emission at 1.27 µm

Sousa et al. JAP 109 (2011) 123302

At larger O_2 admixture, shift towards higher power \rightarrow energy consumption through molecular vibrational and rotational excitations, dissociations

Reactive species density: n_N

- Measurement of absolute atomic nitrogen density by VUV FTS
- Atmospheric pressure RF microplasmas in $He/N_2/O_2$ (d= 1mm)
- Transitions from the ground state to the quadruplet state located around 120 nm.

- Difficulty of diagnostics → considerable emphasis on numerical modeling
- Different kind of model: PIC, fluid and global

RF capacitive discharges at atmospheric pressure (APPJ)

V. Schulz-von der Gathen et al., J. Phys. D 41 (2008) 194004

- RF frequency : 13.56-27.12 MHz
- electrode gap :1 mm
- He/O₂ or He/N₂
- Gas flow to produce the plasma jet
- 1D PIC simulation in He/N_2 (Kawamura *et al.* PSST **23** (2014) 035014)
- 1D Fluid model in He/O₂
 (Niemi *et al.* PSST **20** (2011) 055005)
- Global model in He/N_2 and He/O_2 (Lazzaroni *et al.* PSST **21** (2012) 035013)

Plasma kinetic description

- Particle-in Cell (PIC) simulations: Define macro-particle and solve the motion of each of these self-consistently with the fields. Method based on Newton's laws. Calculation of the electric field at every time-step from positions of charged particles (Poisson equation)
- Collisions are treated with Monte Carlo (MC) approach
- Advantage: accurate and self-consistent approach; fields, particle densities and fluxes obtained without making any assumptions about the particle temperatures or velocity distribution
- Disadvantage: long calculation time, no or simple chemistry

PIC-MCC simulation of APPJ

- RF-APPJ in He/0.1%N₂ (electropositive plasma); 1D simulation
- Each computer particle represents a cluster of 10⁷ "real" particles

For each timestep:

1) Particles are linearly weight \rightarrow charge density at the grid points

- 2) Poisson's equation \rightarrow electric field at the grid points
- 3) Determination of the force on each particle
- 4) Motion Newton equation \rightarrow particle new positions and velocities

5) Boundaries conditions \rightarrow bound particles are removed and injected particles are introduced (secondary electrons)

6) MCC handler \rightarrow collisions \rightarrow particle velocities are adjusted

3 species: N_2^+ , He* and e⁻ 8 collisions

Time calculation ~ day

- 1. $e + He \rightarrow e + He$, Elastic Scattering 2. $e + N_2 \rightarrow e + e + N_2^+$, Ionization
- 3. $e + N_2^+ \rightarrow N_2$, Recombination
- 4. $N_2^+ + He \rightarrow N_2^+ + He$, Ion Elastic Scattering
- 5. $e + He \rightarrow e + He^*$, Metastable Excitation
- 6. $\text{He}^* + 2\text{He} \rightarrow \text{He}_2^* + \text{He}$, Loss of He^* (He_2^* is not followed
- 7. $\text{He}^* + \text{N}_2 \rightarrow \text{e} + \text{N}_2^+ + \text{He}$, Penning Ionization by He^* 22
- 8. $\text{He}^* + \text{He} \rightarrow \text{He}^* + \text{He}$, He^* Elastic Scattering

PIC simulation of APPJ

Fluid description

- S
- Particle conservation equation or continuity equation (obtained by integrating the Boltzmann equation over velocity space):

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = S - L$$
 volume source term volume loss term

- Momentum conservation equation (obtained by integrating the Boltzmann equation over velocity space after multiplication by mv), with B=0: $nm\left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right] = nq\mathbf{E} - \nabla p - m\mathbf{u}[nv_{\rm m} + S - L]$
- Energy conservation (obtained by integrating the Boltzmann equation over velocity space after multiplication by 0.5mv²)
- Coupled to Poisson equation for self-consistent E field
- Can be coupled to a Boltzmann's solver for accurate rate coefficient

Fluid model of APPJ

 ${\rm He/O_2}$ (electronegative plasma)

- Importance of electron dynamics
- Electron power strongly non uniform in space and time
- 1D fluid model

Fluid model of APPJ

Time and space averaged electron density and mean electron energy

Decrease of $n_{\rm e}$ and increase of $T_{\rm e}$ with power; change in the time and space averaged EEDF

Lost of accuracy but faster calculation time and more complexe chemistry than PIC model

Global description

- Volume-averaged (0D) model: densities and temperatures are uniform in space (obtained by spatial integration of fluid equations)
- Particle balance:

$$\frac{dn_{\alpha}}{dt} = G_{\alpha} - P_{\alpha}$$

1...

• Electron power balance:

$$\frac{d}{dt}\left(\frac{3}{2}n_e eT_e\right) = P_{\rm abs} - P_{\rm dis}$$

27

Particle balance at low pressure

• Particle losses at the walls. The term P_{α} contains volume and wall losses. For the electron particle balance at low pressure, wall losses dominate and in one dimension:

• A plasma transport theory is required to relate the space-averaged electron density to the flux at the wall

Particle balance: issues in µplasmas

- In microdischarges, ionization is often non uniform. Classical low-pressure transport theory do not apply
- Fortunately in some instances volume losses dominate (recombination)
- However, evaluation of wall losses is a critical point for high-pressure discharges modeling
- Properly evaluate the reaction rates $(T_e(x,t))$
- Properly evaluate the electron power absorption 29

Hybrid analytic-numerical global model of APPJ

- → Fast solution of the discharge equilibrium: exploration of a large parameter space
- → Variations of discharge parameters with discharge composition and RF power

• Three regions: - a quasi-neutral plasma ($n_i = n_e = n_0 = const$)

- two sheaths ($n_i=n_0$ and $n_e=0$)

30

- Ions do not respond to the RF field
- Analytical expressions of $J_C(t)$, s(t), E(t) and $P_C(t)$

Global model

Particle balance

Global e⁻ power balance

$$\frac{dn_{\alpha}}{dt} = G_{\alpha} - P_{\alpha}$$

$$\frac{\mathrm{d}T_{\mathrm{e}}}{\mathrm{d}t} = \frac{2}{3} \frac{P_{\mathrm{c}}(t)}{en_{\mathrm{e}}} - \frac{2}{3} \nu \frac{3m}{M} T_{\mathrm{e}} - \sum_{j} \frac{2}{3} \nu_{j} \mathcal{E}_{j}$$

numerically

analytically

3) Mean rate coefficient

1) $P_c(t) \leftarrow$ homogeneous discharge 2) $T_e(t) \leftarrow$ analytical integration

Discharge equilibrium

Electron temperature

Electron energy balance:

$$\frac{\mathrm{dT}_e}{\mathrm{d}t} = \frac{2}{3} \frac{P_{\mathrm{c}}(t)}{en_e} - \frac{2}{3} \nu \frac{3m}{M} \mathrm{T}_e$$

$$P_{\rm c}(t) = \overline{P}_{\rm c}[1 + \cos(2\omega t - \theta)]$$

Hypothesis: $-T_e(t)$ uniform in the bulk $-n_e$ uniform and independent of time

integration

$$T_e(t) = \overline{T}_e + \widetilde{T}_e \cos(2\omega t - \phi_0)$$

Electron temperature

Unlike at low pressure, Te oscillates during the rf cycle. This point is extremely important for the global modeling.

Effective rate coefficients

- Electron-activated processes strongly affected by $T_e(t)$
- Maxwellian rate coefficients: $K = K_0 \exp(-\mathcal{E}_a/T_e)$
- Averaging over the oscillating T_e

 \rightarrow enhanced rate coefficient:

$$\overline{K} = K_0(\mathrm{T}_{e\max}) \operatorname{erfc}\left(\sqrt{\mathcal{E}_a/2\widetilde{\mathrm{T}}_e}\right)$$

 $\langle K_0 \exp\left(-E_a/T_e(t)\right) \rangle \neq K_0 \exp\left(-E_a/\langle T_e(t) \rangle\right)$ 34

Particle balance for each species:

$$\frac{dn_{\alpha}}{dt} = G_{\alpha} - P_{\alpha}$$

Electropositive plasma He-N_2 mixture

- 0.1% of N₂
- 8 species
- 15 reactions in the gas phase
- Surface reactions for all species
- Tg=345 K

The 8 species: He, He⁺, He₂⁺, He^{*}, He₂^{*}, N₂, N₂⁺ and e⁻

Time calculation ~ few ms

Particle balance for each species:

$$\frac{dn_{\alpha}}{dt} = G_{\alpha} - P_{\alpha}$$

Electronegative plasma He-O_2 mixture

- 0.1-1 % of O₂
- 16 species
- 132 reactions in the gas phase
- Surface reactions for all species
- Tg=345 K

The 16 species: He, He⁺, He₂⁺, He^{*}, He₂^{*}, O₂, O, O₃, O⁺, O₂⁺, O⁻, O₂⁻, O₃⁻, O^{*}, O₂^{*} and e⁻

Time calculation ~ few seconds

Sheath physics: limitation in $%O_2$

- Finite sheath widths limit operating regimes in atmospheric pressure discharges.
- Requirement for equilibrium: $\bar{s} < l/2$
- Time average energy balance and magnitude of the oscillating sheath width give (v>>ω):

$$\omega \bar{s} = u_{Bg} (6\bar{\zeta})^{1/2}$$

$$u_{Bg} = (e\bar{T}_e/M)^{1/2}$$
RF time

RF time average energy loss factor

Sheath physics: limitation in $%O_2$

- Sheath size increases with %O₂
- Limit of $%O_2$ when sheath size exceeds half-gap

Global model vs PIC simulation

 He/N_2

- Good qualitative agreement

- Global model predictions lower than that of fluid model (factor of 2 for O and O_3 and factor of 3 for O^{*} and O_2^*)

Global model vs fluid model: charged species

 He/O_2

Global model vs fluid model: charged species

- Good qualitative agreement
- n_e (global model) $\approx 3*n_e$ (fluid model)
- Negative ion densities (global model) $\approx 3/2$ *Negative ion densities (fluid model)

Hybrid model

- Some species are fluid-like and others are particle-like \rightarrow hybrid model
- PIC-MC for particles which need detailed distribution function (often electrons in µplasmas)
- Fluid model for others species (often ions and neutrals)
- Advantages: accurate + self-consistent + reduced calculation time

Hybrid model: example

- Hybrid model of a MHCD in Ar (hole diameter = $200-300 \mu m$)
- 2D fluid model + MC simulation for beam electrons emitted at the cathode

Kushner, JPhysD 38 (2005) 1633

Microplasmas for material synthesis

- Synthesis from vapour precursors
- Synthesis from evaporation or sputerring of a sacrificial electrode
- Synthesis from plasma-liquid interactions

Synthesis from vapour precusors: exemple of bimetallic nanoparticles Ni_xFe_{1-x}

Carbon nanotubes

Bimetallic nanoparticles

Chiang et al., Advanced Materials 20 (2008) 4857, USA

Synthesis from evaporation/sputtering of solid metal electrodes

Mariotti et al., IEEE Trans. Plasma Sci. 37 (2009) 1027, UK

Synthesis of metal and metal-oxide nanostructures

Deposition of ZnO thin films by inductively coupled microplasmas

-Thin filament in quartz capillary -Zn finament diameter: 0,25 mm -Ignition:short HV dc (0,5s;15 kV) -Plasma sustained by a solenoidal coil (UHF generator, f=450 MHz) -Patm, Ar gas (50-200 sccm), 25W

Synthesis of Si nanocones by RF microplasma

Yang et al., Thin solid films **515** (2007) 4158, Japan

SEM image of products formed underneath the tube electrode

Synthesis by plasma-liquid interactions: example of Ag nanoparticles (SERS)

Chang et al., J. Vac. Sci. Technol. 28 (2010) L5, USA

-Anode: Pt, 1 cm x 1 cm
-Cathode: stainless-steel capillary, 5 cm x 180 μm
hole diameter, 1 mm from the surface
-Ar flow rate: 25 sccm
-Electrolyte: 1 mmol/L AgNO₃, target
molecule=crystal violet (CV), de-ionized water
-V=290V and I=2mA
-time ranging=1-30 min

TEM images (process time=10 min) Mean particle diameter=7,5nm with standard deviation=2 nm

Microplasmas for environment

S

- Decomposition of Toluene

CO₂ dissociation by microplasmas

Patm; hole diameter=400µm

Taylan et al., PSST 24 (2015) 015006, Austin, USA

Decomposition of Toluene by microplasmas

Surface discharge microplasma

-SA

Seto et al., J. J. Appl. Phys. **44** (2005) 5206, Japan

Merci pour votre attention

LSPM-CNRS Université Paris 13 99 Av J. B Clément 93430 Villetaneuse, France

www.lspm.cnrs.fr

Fax: +33 1 49 40 34 14

-f = 2 m

-1200 g/mm

-résolution spatiale = $2 \,\mu m$

-dispersion spectrale: 0.788 pm/pixel

Spectromètre SOPRA haute-résolution (débitmètre H₂) (outils réseau plasmas froids)