

Effets de la pression sur les Plasmas d'Entrée Atmosphérique Planétaire et sur les Plasmas induits par Laser

Arnaud BULTEL

CORIA, UMR CNRS 6614, Normandie Université, 76801 Saint-Etienne du Rouvray cedex, FRANCE

arnaud.bultel@coria.fr

Sommaire

 Plasmas d'Entrée Atmosphérique Planétaire Contexte Physique de l'Entrée Atmosphérique Planétaire Modèles Collisionnels-Radiatifs ↔ Influence de la Pression
 Plasmas induits par Laser Contexte Physique des Plasmas induits par Laser Expériences ↔ Résultats de Modèles Collisionnels-Radiatifs Effets de la Pression

Sommaire

- **1.** Plasmas d'Entrée Atmosphérique Planétaire Contexte Physique de l'Entrée Atmosphérique Planétaire Modèles Collisionnels-Radiatifs ↔ Influence de la Pression
- 2. Plasmas induits par Laser

Contexte

Physique des Plasmas induits par Laser

Expériences \leftrightarrow **Résultats de Modèles Collisionnels-Radiatifs**

Effets de la Pression

Earth Natural Entries...

Police patrol at Edmonton, Canada

(November, 20th 2008, 23:30 UTC)

Chelyabinsk, Russia

(February, 15th 2013, 03:20 UTC)

Simplification along the stagnation streamline

RH1D Eulerian codes

Post-shock relaxation

Radiative recombination $X^+ + e^- \rightarrow X_i + h \nu$

CoRaM-MARS

MARS atmosphere $96 \% CO_2 2 \% N_2 2\% Ar$

Туре	21 species	1600 states
Molecules	CO2	$X^{1}\Sigma_{g}^{+}(14_{Ev < 0.8 eV} \text{ with } v_{1}, v_{2}, v_{3}, \text{ and } 106_{Ev > 0.8 eV} \text{ with } i00-0j0-00k) ^{3}\Sigma_{u}^{+}, ^{3}\Delta_{u}, ^{3}\Sigma_{u}^{-}$
	N ₂	$X^{1}\Sigma_{g}^{+}(v = 0 \rightarrow 67) A^{3}\Sigma_{u}^{+}, B^{3}\Pi_{g}, W^{3}\Delta_{u}, B^{\prime 3}\Sigma_{u}^{-}, a^{\prime 1}\Sigma_{u}^{-}, a^{1}\Pi_{g}, w^{1}\Delta_{u}, G^{3}\Delta_{g}, C^{3}\Pi_{u}, E^{3}\Sigma_{g}^{+}$
	0 ₂	$X^{3}\Sigma_{g}^{-}$ (v = 0 \rightarrow 46) $a^{1}\Delta_{g}$, $b^{1}\Sigma_{g}^{+}$, $c^{1}\Sigma_{u}^{-}$, $A'^{3}\Delta_{u}$, $A^{3}\Sigma_{u}^{+}$, $B^{3}\Sigma_{u}^{-}$, $f^{1}\Sigma_{u}^{+}$
	C ₂	$X^{1}\Sigma_{g}^{+}(v = 0 \rightarrow 36) a^{3}\Pi_{u}, b^{3}\Sigma_{g}^{-}, A^{1}\Pi_{u}, c^{3}\Sigma_{u}^{+}, d^{3}\Pi_{g}, C^{1}\Pi_{g}, e^{3}\Pi_{g}, D^{1}\Sigma_{u}^{+}$
	NO	$X^{2}\Pi$ (v = 0 \rightarrow 53) $a^{4}\Pi$, $A^{2}\Sigma^{+}$, $B^{2}\Pi$, $b^{4}\Sigma^{-}$, $C^{2}\Pi$, $D^{2}\Sigma^{+}$, $B'^{2}\Delta$, $E^{2}\Sigma^{+}$, $F^{2}\Delta$
	CO	$X^{1}\Sigma^{+}$ (v = 0 \rightarrow 76) $a^{3}\Pi$, $a'^{3}\Sigma^{+}$, $d^{3}\Delta$, $e^{3}\Sigma^{-}$, $A^{1}\Pi$, $I^{1}\Sigma^{-}$, $D^{1}\Delta^{-}$, $b^{3}\Sigma^{+}$, $B^{1}\Sigma^{+}$
	CN	$X^{2}\Sigma^{+}$ (v = 0 \rightarrow 41) $A^{2}\Pi$, $B^{2}\Sigma^{+}$, $D^{2}\Pi$, $E^{2}\Sigma^{+}$, $F^{2}\Delta$
Molecular ions	N ₂ ⁺	$X^2\Sigma_g^+$, $A^2\Pi_u$, $B^2\Sigma_u^+$, $a^4\Sigma_u^+$, $D^2\Pi_g$, $C^2\Sigma_u^+$
	0 ₂ ⁺	$X^2\Pi_g$, $a^4\Pi_u$, $A^2\Pi_u$, $B^4\Sigma_g^-$
	C ₂ +	$X^{4}\Sigma_{g}^{-}$, $1^{2}\Pi_{u}$, ${}^{4}\Pi_{u}$, $1^{2}\Sigma_{g}^{+}$, $2^{2}\Pi_{u}$, $B^{4}\Sigma_{u}^{-}$, $1^{2}\Sigma_{u}^{+}$
	NO ⁺	$X^{1}\Sigma^{+}$, $a^{3}\Sigma^{+}$, $b^{3}\Pi$, $W^{3}\Delta$, $b'^{3}\Sigma^{-}$, $A'^{1}\Sigma^{+}$, $W^{1}\Delta$, $A^{1}\Pi$
	CO ⁺	$X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, $C^2\Delta$
	CN ⁺	$X^{1}\Sigma^{+}$, $a^{3}\Pi$, ${}^{1}\Delta$, $c^{1}\Sigma^{+}$
Atoms	Ν	⁴ S° _{3/2} , ² D° _{5/2} , ² D° _{3/2} , ² P° _{1/2} ,(252 states)
	0	³ P ₂ , ³ P ₁ , ³ P ₀ , ¹ D ₂ ,(127 states)
	С	³ P ₀ , ³ P ₁ , ³ P ₂ , ¹ D ₂ ,
	Ar	¹ S ₀ , ² [3/2]° ₂ , ² [3/2]° ₁ , ² [1/2]° ₀ , (379 states)
Atomic ions	N ⁺	³ P ₀ , ³ P ₁ , ³ P ₂ , ¹ D ₂ ,
	0+	⁴ S° _{3/2} , ² D° _{5/2} , ² D° _{3/2} , ² P° _{3/2} ,(8 states)
	C +	² P° _{1/2} , ² P° _{3/2} , ⁴ P _{1/2} , ⁴ P _{3/2} ,(8 states)
	Ar ⁺	${}^{2}P^{\circ}_{3/2}, {}^{2}P^{\circ}_{1/2}, {}^{2}S_{1/2}, {}^{4}D_{7/2}, \dots $ (7 states)

Vibrational states of CO₂

MARS atmosphere 96 % CO₂ 2 % N₂ 2% Ar

CoRaM-MARS

Elementary proces	ses T _e ≠T _A	Rate coefficients and Einstein coefficients	
Collisional processes Radiative processes	 (e- and h-) vibrational processes (e- and h-) electronic excitation Excitation transfer Dissociation Ionisation Charge exchange Dissociative recombination Main molecular systems 	Rate coefficients Einstein coefficients	Forward rate coefficients $k_i(T_{A,e}) = \sqrt{\frac{8 k_B T_{A,e}}{\pi \mu}} \int_{x_0}^{+\infty} x e^{-x} \sigma_i(x) dx$ with $\sigma_i(x)$ the cross section and $x = \frac{\varepsilon}{k_B T_{A,e}}$ the reduced collision energy Backward rate coefficients from Detailed Balance NIST database
« Dual » processes	Main atomic transitions Radiative recombination Dielectronic recombination		

 $\rightarrow \sim$ **1 000 000** elementary processes

$$K_{I}$$

$$X_{i} + M \stackrel{\rightarrow}{\leftarrow} X^{+} + e^{-} + M$$

$$k_{R}$$

$$K_{R}$$

$$K_{R}$$

$$K_{I} \text{ depends on } T_{A}$$

$$K_{R} \text{ depends on } T_{A} \text{ and } T_{e}$$

$$\frac{k_{I}}{k_{R}} = \frac{g_{+} g_{e}}{g_{i}} \left(\frac{2\pi m_{e} k_{B} T_{e}}{h^{2}}\right)^{3/2} e^{-\frac{E_{i}^{ioni}}{k_{B} T_{A}}}$$

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

Altitude (km)

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

LA ROCHELLE – 17 octobre 2018 – **A. BULTEL**

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

J. Annaloro and A. Bultel To be published in Phys. Plasmas

15

J. Annaloro and A. Bultel To be published in Phys. Plasmas

Sommaire

 Plasmas d'Entrée Atmosphérique Planétaire Contexte Physique de l'Entrée Atmosphérique Planétaire Modèles Collisionnels-Radiatifs ↔ Influence de la Pression

2. Plasmas induits par Laser

Contexte

Physique des Plasmas induits par Laser

Expériences ↔ Résultats de Modèles Collisionnels-Radiatifs

Effets de la Pression

 $\begin{array}{rl} \mbox{Fusion reaction} \\ {}^2D + {}^3T \rightarrow {}^4He + {}^1n \end{array}$

³T radioactive

³T has to be monitored

Implantation of ${}^{3}T$, ${}^{2}D$ (fuel) and ${}^{14}N$, ${}^{16}O$... (impurities) within the W divertor also in the Be wall

In situ measurement by LIBS

Composition analysis by Laser-Induced Breakdown Spectroscopy – LIBS

Melting

```
Vaporization – explosion phase
```

Ionization (MPI & IB)

```
Plasma (10<sup>10</sup>Pa, 10 000 K)
```

Shockwave

Composition analysis by Laser-Induced Breakdown Spectroscopy – LIBS

Melting

Vaporization – explosion phase

Ionization (MPI & IB)

Plasma (10¹⁰*Pa*, 10 000 *K*)

Shockwave

Spectroscopic analysis

- $0 < t < 100 \ ns$ strong continuum
- t < 500 ns strong departure from equilibrium
- t > 500 ns low non equilibrium (atom. and molec. Rad.)
- ⇒ Exploitation of Saha-Boltzmann plots

Very rapid evolution over the first 200 ns then slower evolution...

The contact surface remains close to the shock front

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

22

Air Fluid dynamics / structure W **Shockwave radius** Shockwave speed 8000 1500 7000 v_perp r_perp 6000 v_para r_para 1000 C 5000 Speed (m s⁻¹) 4000 3000 Radius (µm) 500 2000 1000 00 0 50 100 150 250 300 50 200 100 150 200 250 0 Time (ns) Time (ns)

Expansion mainly perpendicular to the sample

Hypersonic expansion ($\mathcal{M}{\sim}25$ at the beginning...)

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

23

LA ROCHELLE – 17 octobre 2018 – **A. BULTEL** E.G. Gamaly *et al.* Phys. Rev. B **71** (2005) 174405

W. Rapin, private comm.

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

The ECHREM* code

*Eulerian CHemically REactive Multi-component plasma code

(0)

(1)

(2)

Hypersonic hemispherical expansion

External gas

Shock layer

Central plasma

Propagation of the shockwave

Bi-layer model

Assumptions

Balance equations

(1)

(2)

(rare gas: Ne, Ar, Kr or Xe)

(shocked rare gas)

(ablated W ou Al)

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

Collisional-radiative models

Shock layer - Argon

Collisional-Radiative model CoRaM-RG

 $\begin{array}{l} Ar + e^{-} \rightleftharpoons Ar^{*} + e^{-} \\ Ar + Ar \rightleftharpoons Ar^{*} + Ar \\ Ar + e^{-} \rightleftharpoons Ar^{*} + 2e^{-} \\ Ar^{*} + e^{-} \rightleftharpoons Ar^{+} + 2e^{-} \\ Ar^{*} + e^{-} \rightleftharpoons Ar^{+} + e^{-} + Ar \\ Ar^{*} + Ar \rightleftharpoons Ar^{+} + e^{-} + Ar \\ Ar^{*} + Ar \rightleftharpoons Ar^{*} \rightleftharpoons Ar^{+} + e^{-} + Ar \\ Ar^{*} + Ar^{*} \rightleftarrows Ar^{+} + e^{-} + Ar \\ Ar^{+} + e^{-} \rightleftharpoons Ar^{*}ou \ Ar + Ar \\ Ar^{+} + e^{-} \Rightarrow Ar^{*}ou \ Ar + hv \\ Ar_{j} \rightarrow Ar_{i < j} + hv \end{array}$

30 000 elementary processes

Collisional Database

 $k_i(T_{A,e}) = \sqrt{\frac{8 k_B T_{A,e}}{\pi \mu}} \int_{x_0}^{+\infty} x e^{-x} \sigma_i(x) dx \text{ with}$ • $\sigma_i(x)$ collisional cross section and • $x = \frac{\varepsilon}{k_B T_{A,e}}$ reduced collision energy Backward rate coefficient deduced from the **Detailed Balance**

Exc. Elec. Impact Exc. Elec. Impact Ioni. Elec. Impact Ioni. Elec. Impact Ioni. Heavy Impact Ioni. Heavy Impact Penning Ioni. Disso. Recomb. Rad. Recomb. Spont. Emiss.

Central plasma - Tungsten

Collisional-Radiative model CoRaM-W

 $W_{i} + e^{-} \rightleftharpoons W_{j>i} + e^{-}$ $W_{i}^{+} + e^{-} \rightleftharpoons W_{j>i}^{+} + e^{-}$ $W_{i}^{+} + \Sigma_{i,Z}W_{i}^{Z+} \rightleftharpoons W_{j>i} + \Sigma_{i,Z}W_{i}^{Z+}$ $W_{i}^{+} + \Sigma_{i,Z}W_{i}^{Z+} \rightleftharpoons W_{j>i}^{+} + \Sigma_{i,Z}W_{i}^{Z+}$ $W_{i}^{+} + e^{-} \rightleftharpoons W_{j}^{+} + 2e^{-}$ $W_{j}^{+} + e^{-} \rightleftharpoons W_{i}^{2+} + 2e^{-}$ $W_{i}^{+} + \Sigma_{i,Z}W_{i}^{Z+} \rightleftharpoons W_{j}^{+} + e^{-} + \Sigma_{i,Z}W_{i}^{Z+}$ $W_{j}^{+} + \Sigma_{i,Z}W_{i}^{Z+} \rightleftharpoons W_{j}^{2+} + e^{-} + \Sigma_{i,Z}W_{i}^{Z+}$ $W_{j}^{+} + e^{-} \rightleftharpoons W_{j}^{+} + hv$ $W_{j}^{+} + e^{-} \rightleftharpoons W_{i}^{+} + hv$ $W_{j}^{+} \rightarrow W_{i<j}^{+} + hv$ $W_{j} \rightarrow W_{i<j} + hv$ Thermal Bremsstrahlung

520 000 elementary processes

Radiative Database

NIST, Atomic Line List, ADAS, HULLAC...

Low precision of the Einstein coefficients for WI transitions

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

W (Ar, p_{atm}) 10 ps 532 nm 10 J cm⁻² Rg

W

 r_{01}

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

Boltzmann plots

W (Ar) 10 ps 532 nm 10 J cm⁻²

Stark shift, Stark width and... cold edge re-absorption

Conclusions

1. Entrée Atmosphérique Planétaire

Rôle de la pression sur les temps de relaxation Rôle de la vitesse couplée

2. Plasmas induits par Laser

Influence de la pression sur l'ablation Influence de la pression sur le panache Influence de la pression sur le confinement Influence de la pression sur les écarts à l'équilibre

Perspectives

- 1. Etudes sur l'entrée de la sonde EXOMARS 2020
- 2. Expériences en Double Pulse sur W et Al avec implantation de H and D
- 3. Tests sur le Tokamak Tore-Supra WEST (CEA Cadarache)

Tore-Supra – WEST

Configuration 1At the end of the AIA (optical fibres)Configuration 2Using off-axis mirrors

Merci de votre attention...

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

Laser-Induced Absorption Spectroscopy LIAS

Inverse Bremsstrahlung !!!

DP – Double Pulse Configuration

Efficient absorption of the second pulse by the plasma

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

Consequences on φ_w

Local parietal heat flux φ_w in chemical non equibrium

- T_i temperature for mode *i*
- γ_i recombination probability for species j
- β_i energy accomodation coefficient for species $j = \theta$ angle with respect to \vec{n}_W
- τ_{ν} spectral transmittivity along \vec{r}
- r distance with d^3V
 - - ε_{ν} spectral emission coefficient

Thermochemical non equilibrium

Excited states population density

(Species X on an excited state m)

$$\frac{\partial [X_m]}{\partial t} + \vec{\nabla} \cdot \left([X_m] \vec{u} + \vec{J}_{X_m} \right) = \left(\frac{\partial [X_m]}{\partial t} \right)_{Coll.} + \left(\frac{\partial [X_m]}{\partial t} \right)_{Rad.}$$
Convection..... τ_{Conv}
Diffusion..... τ_{Diff}
Collisional-radiative..... τ_{CR}

Damkhöler numbers

$$\begin{pmatrix} \frac{\partial[X_m]}{\partial t} \end{pmatrix}_{Coll.} \gg \begin{pmatrix} \frac{\partial[X_m]}{\partial t} \end{pmatrix}_{Rad.} \qquad Da_1 = \frac{\tau_{Conv}}{\tau_{CR}} \qquad Da_2 = \frac{\tau_{Conv}}{\tau_{MB}} \qquad Da_3 = \frac{\tau_{Conv}}{\tau_{e-h}}$$

$$\begin{array}{c} \text{Chemical equilibrium} & Da_1 \gg 1 \\ \text{Chemical non equilibrium} & Da_1 \approx 1 \\ \text{Frozen flow} & Da_1 \ll 1 \\ \end{array} \qquad \begin{array}{c} Da_2 \gg 1 \\ Da_2 \gg 1 \\ Da_3 \leq 1 \\ \end{array} \qquad \begin{array}{c} Da_3 \leq 1 \\ \text{Translation equilibrium Thermal non equilibrium} \end{array}$$

Excitation non equilibrium

Planetary Atmospheric Entry

LA ROCHELLE – 17 octobre 2018 – A. BULTEL

and possible influence of radiation

Validation of CoRaM-MARS and RH1D codes?

High Enthalpy Wind Tunnel

SOUPLIN - CORIA

Spectroscopic analysis

W III transitions reported in the NIST database with A_{ki} **1%** 47

LA ROCHELLE – 17 octobre 2018 – A. Burn

Ar **Boltzmann plots** W (Ar, p_{atm}) 30 ps 532 nm 10 J cm⁻² W t = 250 nst = 350 ns t = 150 ns10²³ 10²³ 10²³ $[W_k]/g_k (m^{-3})$ 10²¹ 10²¹ 10²¹ 10¹⁹ 10¹⁹ 10¹⁹ 10¹⁷ ' 10¹⁷ 10¹⁷ 10 10 10 5 5 5 t = 650 ns t = 850 ns t = 1050 ns 10²³ 10²³ 10²³ $[W_k]/g_k (m^{-3})$ 10²¹ 10²¹ 10²¹ Circles CORIA exp. n_e **CORIA exp. neutrals** 10¹⁹ 10¹⁹ 10¹⁹ 10¹⁷ L 10¹⁷ 10¹⁷ 10 10 5 10 0 5 5 0 $E_k(eV)$ $E_k(eV)$ $E_{k}(eV)$

Low precision of the Einstein coefficients for WI transitions

48

LA ROCHELLE – 17 octobre 2018 – **A. BULTEL**

Influence of the background gas pressure

W (Ar) 10 ps 532 nm

10 J cm⁻²

Long lifetime of the plasma

Plasma extinction for t \sim 500 ns

Calculated temperature slightly higher...

Satisfactory agreement for the radii...

Temperature - Chemistry

Al (p_{atm}) 10 ps 532 nm 10 J cm⁻²

Strong decrease in T_A and $T_e \sim 70$ ns due to the pressure

Strong decrease in $[Al^{2+}]$ for ~ 70 ns due to T

Rg

A

0

*r*₀₁*r*₁₂

Shock layer

Al (p_{atm}) 10 ps 532 nm 10 J cm⁻²

Strong thermal non equilibrium

Strong influence of Rg_2^+ at the beginning

Then replaced by that of Rg^+

Rg

0