

Influence de la pression dans les procédés de synthèse de films de diamant par plasmas micro-ondes

Fabien Bénédic

Laboratoire des Sciences des Procédés et des Matériaux

CNRS, Université Paris 13, Sorbonne Paris Cité

Plan de la présentation

- Propriétés, applications et principe de la synthèse du diamant
- Diamant mono- et polycristallin : décharges CH_4/H_2 « haute » pression
- Diamant nanocristallin : décharges $CH_4/H_2/Ar \ll$ haute \gg pression
- Diamant nanocristallin basse température : décharges $CH_4/H_2/CO_2$ « basse » pression
- Conclusion et perspectives

Les différentes formes du carbone

Pourquoi le diamant?

Combinaison de propriétés extrêmes

Nombreux domaines d'applications :

UNIVERSITÉ

- Mécanique
- Tribologie
- Optique
- Electronique
- Thermique

...

Plutôt réalité

Dissipateurs thermiques

Electrodes

Fenêtres

Scalpels

Crédits : Element Six

Détecteurs

Capteurs

Haut-parleurs

Pourquoi des films synthétiques?

Diamant naturel = rareté + coût prohibitif + cristaux de faible dimension
 Diamant HPHT = cristaux + impuretés => applications tribo et mécaniques
 Diamant métastable = films + contrôle propriétés => autres applications

Principe de la synthèse de diamant

♥ Domaine du diamant métastable (P < Pa, T < 1000 K)</p>

- Considérations thermodynamiques :

Faible différence d'enthalpie libre de formation entre graphite et diamant

 $\Delta G_{293K}(diamant) - \Delta G_{293K}(graphite) = 2.10 \text{kJ} \cdot \text{mol}^{-1}$ (CNTP)

Formation simultanée de <u>graphite</u> et de <u>diamant</u> à partir d'une <u>phase gazeuse</u> activée contenant une <u>source de carbone</u>

- Considérations cinétiques :

Le mélange gazeux doit procurer des <u>espèces</u> influant sur les cinétiques de <u>croissance</u> en <u>éliminant</u> préférentiellement les contributions non-diamant (gravure)

CVD assistée par plasma micro-onde (MPACVD)

(épitaxie, structure, pureté,...), coût, complexité,...

Procédé MPACVD « classique »

CONDITIONS TYPIQUES DE CROISSANCE

UNIVERSITÉ P

Exemples de réacteurs micro-ondes au LSPM

Diamant monocristallin

• Substrats en diamant, homoépitaxie

Écoulement de marches (Step Flow Growth)

 Vitesse de dépôt : jusqu'à 70 µm/h Épaisseur : jusqu'à 2 mm Surface : jusqu'à 1 cm²

Diamant polycristallin

Films auto-supportés épaisseur 200 μm

Les enjeux de la synthèse de diamant

Applications

Électronique

Mécanique

Optique

Membranes :

Fenêtres :

Problèmes à résoudre

- Qualité (taux de sp², impuretés)
- Microstructure
- Vitesse de croissance
- Dopage
- Contact électrique
- Adhérence
- Rugosité
- Microstructure
- Revêtement de pièces complexes (3D)
- Vitesse de croissance
- Résistance mécanique

- Rugosité

- Homogénéité sur une large surface
- Contrôle de la pureté
- Large surface
- Vitesse de croissance
- Rugosité

Méthodologie

• Approche globale et transversale

Procédés – Plasmas - Matériaux - Applications

Mécanismes de croissance (Harris & Goodwin 1993)

Création de sites actifs

$$Cd - H + H \xrightarrow{k_1} Cd^* + H_2$$
$$Cd^* + H \xrightarrow{k_2} Cd - H$$

Adsorption du radical CH₃ et deshydrogénation

$$Cd^{*} + CH_{3} \xrightarrow[k_{4}]{} Cd - CH_{3}$$

$$Cd - CH_{3} + H \xrightarrow{k_{5}} Cd - CH_{2}^{*} + H_{2}$$

$$Cd - CH_{2}^{*} + H \xrightarrow{k_{6}} Cd - Cd - H + H_{2}$$

Rôle fondamental de H et CH₃

 $G_{(100)} = k_3 \frac{n_s}{n_d} \left(\frac{k_1}{k_1 + k_2} \right) \frac{[CH_3]_s [H]_s}{\frac{k_4}{k_5} + [H]_s}$

Quand [H]_{surface} est suffisament élevée (> 10⁻⁸ mole.cm⁻³) la vitesse de croissance ne dépend que de [CH₃]_{surface}

S.J. Harris and D. G. Goodwin (1993), <u>J. Phys. Chem.</u> 97 (1993) 23

Mécanismes de croissance (Harris & Goodwin 1993)

Couplage pression-puissance dans les procédés MPACVD

Couplage pression-puissance dans les procédés MPACVD

Densité de puissance micro-onde (MWPD) = Puissance absorbée/volume plasma

Couple pression-puissance pour un volume de plasma constant

Modélisation des décharges micro-ondes

• Model 1D avec H_2/CH_4

=> Etude de H et CH₃

G. Lombardi et al., J. Appl. Phys. 98 (2005) 053303

<u>A hautre pression, la production de H suit la température alors que CH₃ est confiné dans les zones plus froides</u>

Modèle auto-cohérent en plasma H₂

K. Hassouni et al. J. Appl. Phys. 86 (1999) 134

Tg : 2200 🗢 3600 K

[H] (cm⁻³)

 $[H]: 5.10^{14} \Rightarrow 4.10^{17} \text{ cm}^{-3}$

F. Silva et al., J. Phys.: Condens. Matter 21 (2009) 364202

Densité d'hydrogène atomique vs MWPD

Densité de CH₃ et vitesse de croissance vs MWPD

Performances du procédé MPACVD

 \rightarrow meilleure dissociation de H₂ et CH₄

→ Vitesse de croissance et pureté plus élevées

Contrôle du procédé d'élaboration

Synthèse de diamant nanocristallin

Principales caractéristiques du diamant nanocristallin

Mélange gazeux $Ar/H_2/CH_4$ (96:3:1) Pression = 200 mbar Puissance micro-onde = 600 W Température de surface \approx 850-900 °C

Vitesse de dépôt : qqs. µm/h Surface de dépôt : 2 pouces Épaisseur : jusqu'à qqs. centaines µm

Principales caractéristiques des décharges Ar/H₂/CH₄

 $1\% CH_4$, $3\% H_2$, 600 W, 200 mbar

T_g très élevée

≈ 4000 K au centre

≈ 2000 K au voisinage du substrat

Espèces hydrocarbonées prépondérantes à la surface :

H>C₂H₂>C>C₂H>CH₃>C₂>CH₂>CH

- Voie réactionnelle majoritaire : voie radicalaire thermique
- Phénomène de diffusion : significatif pour C2, C et H
- Espèce de gravure H présente en grande quantité

Comparaison décharge MCD/décharge NCD

D	<u>écharge H₂/CH₄ 9 W/cm³</u>	<u>Décharge H₂/CH₄ 45 W/cm³</u>	<u>Décharge Ar/H₂/CH₄ 7,5 W/cm³</u>			
Nature du film Type de croissance Espèces actives dans la croissance	MCD Colonnaire CH ₃ et H	MCD Colonnaire CH ₃ et H	NCD Germination secondaire Précurseur(s) carboné(s) ? H ?			
Densité des espèces (cm ⁻³) près de la surface H CH ₃	3,7.10 ¹⁴ 2,1.10 ¹³	4,0.10 ¹⁶ 1,3.10 ¹⁴	5,0.10 ¹⁵ 4,2.10 ¹²			
de croissance plus élevée						
Environnement local près de la surface ^(a)						
Τ _g	1380	1842	2077			
H/CH₃	17	304	1158			
CH ₃ /ΣCH _x	346	5,5	0,16			
H/ΣCH _x	6009	1686	182			
(Espèces $CH_x = CH_2$, CH , C) $Changement de l'environnement local de CH_3Espèces CH_x deviennent significatives$						
⁸ P. W. May et al. Journal of Applied Physics 100(024301)(2006)						
ST CITS		Changement de croissance et d	e mécanisme de e nature de film			

Réacteur à plasma micro-onde distribué

*Collaboration LPSC (Grenoble) et LAPLACE (Toulouse) L. Latrasse et al., Plasma Sources. Sci. Technol **16** (2007) 7

Spécificités du mélange H2/CH4/CO2

Mélange conventionnel $H_2/CH_4 + CO_2$

• Rôle de O et OH :

-----> Gravure efficace du graphite¹ ■ **O** abstraction de H à la surface² [H] à la surface 3

OH -----> Gravure des phases non-diamant⁴

La présence d'espèces oxygénées permet d'obtenir des films de NCD à basse température

¹Vescan et al DRM 1996

Intérêts du réacteur Plasmodie

<u>Traitement de substrats de géométrie complexe</u> : exemple du Si₃N₄*

Réacteur BJ

SR Crrs

Intérêts du réacteur Plasmodie

Réacteur Plasmodie

UNIVERSIT

Comparaison des procédés HP/HT et BP/BT

Modélisation en configuration mono-source

Modélisation en configuration mono-source

Modélisation en configuration multi-sources

Modélisation en configuration multi-sources

UNIVERSITÉ

Homogénéité des films vs homogénéité du plasma

UNIVERSITÉ

Diagnostic des décharges H₂/CH₄/CO₂

Espèces et transitions considérées* :

Diagnostic	Type of laser	Species	Temperature measurement	Concentration measurement
OES		H ₂ , Q(2,2) Fulcher- α	X	X
0E3		H, Balmer lines		X
IR-AS	TDL	CH ₃ , Q(3,3)	×	X
		CH₃, Q(12,12)	×	
		CH ₄	×	X
		C ₂ H ₂		X
		CO ₂		X
		C ₂ H ₆		X
	EC-QCL	CO , v = 0, 1, 2 and 3	×	×

Conditions plasma :

Pression [mbar]:	Puissance [kW	1		
0.25 - 0.55	2 - 3			

<u>Paramètres standards :</u> 97 mm; H₂/CH₄/CO₂ (96.5 % / 2.5 % / 1%)

*Coll. INP Greifswald, Allemagne

Température rotationnelle de H₂

Bilan des températures mesurées

Températures cinétiques et rotationnelles à 3 kW et 0.35 mbar 1:

Species	Temper	ature [K]	Lifetime	Zone of detection	
$H_2(d^3\Pi_u^-)$	T _{rot} = 10 3	<mark>30</mark> (±100)	40 ns	Hot zone	
CO , _V = 0	T _{rot} = 360 (±30), T _{kin} = 345 (±30)		stable	Cold zone	
CO , _V = 1	T _{rot} = 525 (±50)	T _{kin} = 480 (±50)	~25 ms	Hot and cold zone	
CO , _V = 2	T _{rot} = 630 (±50),	T _{kin} = <mark>635</mark> (±100)	~12.5 ms	Hot and cold zone	
CO , _V = 3	T _{rot} = 900 (±200)	T _{kin} = 685 (±200)	~8 ms	Hot and cold zone	
CH₄	T _{kin} = <mark>350</mark> (±50)		0) stable Cold zor		
CH₃	T _{rot} = 640 (±180)		1-5 ms	Hot zone	

Zones de detection des différentes espèces :

Taux de dissociation de H_2 , CO_2 et CH_4

¹Nave *et al* PSST 2017, Part 2

K_D élevé pour CH₄ et H₂ → Production d'espèces de croissance et de gravure K_D élevé pour CO₂ → Production d'espèces oxygénées nécessaires pour la croissance de NCD à basse température

Concentration des espèces

- $[C_2H_2] = 2 \cdot 10^{13} \text{ cm}^{-3} \text{ et } [C_2H_6] = 1.5 \cdot 10^{12} \text{ cm}^{-3}$
- [CH₃] = $2 \cdot 10^{12}$ cm⁻³ et [H] = $2 \cdot 10^{14}$ cm⁻³

[CO] mesurée plus élevée que [CO2] introduit —>

- [CO (v = 2)] = 8 · 10¹¹ cm⁻³
- [CO] = $1 \cdot 10^{14}$ cm⁻³

CH₄ est une source additionnelle de carbone pour la production de CO

CO et H sont les <mark>principales espèces</mark> resultant de la décomposition du mélange gazeux + concentration significative de CH₃

UNIVERSITÉ

¹Nave *et al* PSST 2017, Part 2

Pas d'effet significatif de la pression

- $[C_2H_2] = 1.5 \cdot 10^{13} \text{ cm}^{-3} \text{ et } [C_2H_6] = 8 \cdot 10^{12} \text{ cm}^{-3}$
- $[H_2] = 2.5 \cdot 10^{15} \text{ cm}^{-3} \text{ et } [CH_4] = 2.5 \cdot 10^{13} \text{ cm}^{-3}$
- [CO (v = 2)] = $1 \cdot 10^{12}$ cm⁻³
- [CO (v = 1)] = $1 \cdot 10^{13}$ cm⁻³ et [CO₂] = $3 \cdot 10^{12}$ cm⁻³

Concentration des espèces

Comparaison des procédés HP/HT et BP/BT

Juste au-dessus de la surface en croissance <u>Températures</u>

¹ Monéger PhD thesis 2009 ² Dekkar master thesis 2017

• Bell Jar (plasma de 2 pouces – MWPD = <u>9 W.cm⁻³</u>): T_{gas} = **2100 K** et T_e = **0.4 eV**¹

→ Mécanismes radicalaires thermiques

• Plasmodie (plasma de 4 pouces – MWPD = 1 W.cm^{-3}): T_{gas} = 600 K et T_e = 1 eV ²

Dans Plasmodie, les espèces sont créées à la fois par la voie radicalaire thermique et la voie électronique

Concentrations ¹

• [CH₃]: même ordre de grandeur comparé à [CH₃] = $4 \cdot 10^{12}$ cm⁻³ dans le BJ

Même quantité d'espèce de croissance CH₃

• [H]: un ordre de grandeur plus faible que [H] = $5 \cdot 10^{15}$ cm⁻³ dans le BJ

Plus faible quantité d'espèce de gravure H

Mise en evidence de l'importance des espèces oxygénées en tant qu'espèces additionnelles de gravure pour le procédé basse température

Discussion de quelques processus chimiques

Principales réactions impliquées dans la formation de quelques espèces-clés¹:

- Dissociation de H₂ par impact d'e : $e + H_2 \Rightarrow e + H_2(b^3\Sigma_u^+) \Rightarrow e + H + H (E_{th} = 8.9 eV)$
- Dissociation de CH₄ par impact d'e : $e + CH_4 \implies e + CH_3 + H (E_{th} = 10 eV)$
- Deshydrogénation de CH_4 : $CH_4 + H \Rightarrow CH_3 + H_2$
- Dissociation de CO₂ et CO par impact d'e : $e + CO_2 \Rightarrow e + CO + \mathbf{0} (E_{th} = 12 eV)$ $e + CO \Rightarrow e + C + \mathbf{0} (E_{th} = 14 eV)$
- Réactions impliquant l'oxygène atomique :

 $CH_4 + 0 \leftrightarrows CH_3 + OH$ $CH_3 + 0 \leftrightarrows H_2CO + H$ $H_2CO + 0 \leftrightarrows HCO + OH$

[CO] mesurée élevée --->

Forte production de O

Production de OH, H₂CO and HCO

Dans Plasmodie CO2 est efficace pour produire O et OH en complément des atomes de H

¹ Nave *et al* PSST 2017, Part 2

Conclusion et perspectives

Pression	Paramètres clés	Mélange	Taille substrat	Température dépôt	Mono	Poly	Nano
> 20 mbar	Tg	CH_4/H_2	2 pouces	> 700 °C	Х	Х	
> 20 mbar	Tg	$CH_4/H_2/Ar$	2 pouces	> 700 °C			Х
< 1 mbar	n _e , T _e , T _g ,	$CH_4/H_2/CO_2$	4 pouces	< 400 °C	X	X	Х

✓ Diamant monocristallin

- Réduction des défauts (dislocations)
- Élargissement de la surface utilisable (> 1 cm²)

✓ Diamant polycristallin/nanocristallin

- Augmentation de la vitesse de croissance
- Accroissement de la surface traitée (> 4 pouces)
- Contrôle de l'homogénéité
- Diminution de la température du substrat (< 100 °C)</p>
- Traitement de géométries complexes

Remerciements

LSPM-CNRS, Villetaneuse, France

J. Achard, X. Aubert, B. Baudrillart, O. Brinza, Th. Chauveau, D. Dekkar, N. Derkaoui, C. Duluard, A. Gicquel, K. Hassouni, R. Issaoui, G. Lombardi, A. Michau, D. Monéger, S. Prasanna, C. Rond, F. Silva, M. Wartel

• INP, Greiswald, Germany

J. Röpcke, A. Nave, S. Hamman, J.H. van Helden

• LPSC-CNRS-IN2P3, Grenoble, France S. Béchu, A. Bes, A. Lacoste, J. Pelletier

• CICECO, University of Aveiro, Portugal R.F. Silva, F.J. Oliveira

Merci de votre attention !