14émes Journées d'Echanges du Réseau des Plasmas Froids 15-18 octobre La Rochelle

Effets de pression générée dans l'eau par décharges électriques ou irradiation laser pulsée

Julien Deroy, Alain Claverie, Michel Boustie, <u>Ekaterina Mazanchenko,</u> Michel Arrigoni

Plan

- Contexte
- Méthodologie
- Décharge dans l'eau
- Simus
- Laser
- Cavitation
- Conclusions et perspectives

Introduction

High power electrical discharge in water:

- generation of shock waves,
- waves propagation and interaction with materials.

Applications:

- medical,
- separation of materials,
- recycling.

Lithotripter and fragments of a 1-cm calcium oxalate stone

Fig. from PhD thesis of Gilles Touya

Problem definition

Examples of fragmentation, ITHPP

Before treatment

Procedure

Objectives	Moyens expérimentaux
Caracterisation du terme source	Visus, strio, emission spectra
Waves propagation	Visus
Interaction with objet / Fragmentation	Visus + inverse measurements

Schematic of experimental setup for high power pulsed underwater electrical discharge

NSTITU

A. Claverie, J. Deroy, M. Boustie, G. Avrillaud, A. Chuvatin, E. Mazanchenko, G. Demol, B. Dramane. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge // Review of Scientific Instruments. 85, 063701 (2014).

Experimental setup, Bmax

- Modular electrical discharge generator:
 - Capacitive storage of electrical energy
 - 1 to 9 capacitors of 1.85µF, maximum voltage of 40kV
 - Stored energy capability : approx. 1-10 kJ
- Discharge circuit:
 - Point-Point or Point-Plane electrodes configuration
 - Variable inter electrodes gap
- Available diagnostics:
 - Current and voltage probes
 - Pressure gauge
 - High speed cameras
 - Velocimetry measurement

J. Deroy and all. Optical diagnostics for pulsed underwater electrical discharge characterization // 2013 APS-SCCM/ AIRAPT JOINT CONFERENCE (7-12 July, Seattle).

Visualization of the plasma through discharge channel

t=12 ns

t=1 μs

t=2.1 μs

t=2.7 μs

t=9.1 μs

t=10 μs

t=30 μs

A. Claverie, J. Deroy, M. Boustie, G. Avrillaud, A. Chuvatin, E. Mazanchenko, G. Demol, B. Dramane. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge // Review of Scientific Instruments. 85, 063701 (2014).

Typical emission spectra from high power underwater electrical discharge

obtained with trigger on discharge instant and 100 μ s after discharge

Bubble expansion, ITHPP

11

Direct observation - Bubble expansion

Measured radius vs. time and extrapolation

Measured deposited electrical energy: 111.6 J (total), 75.7 J (1st "arch" of power deposition) Estimated deposited electrical energy from potential energy at r=Rmax: 67.9 J

Pressure wave propagation observation

RADIOSS

Numerical simulation has been provided with Altair HyperWorks products: HyperMesh, HyperCrash and RADIOSS code.

RADIOSS:

- Finite Element Solver,
- linear and non-linear simulations (structures, fluids, fluid-structure interaction, mechanical systems etc.),
- high-speed impact simulation over 20 years,
- easy transition to OptiStruct and HyperStudy.

Procedure

Experiment to simulate

Tests were carried out at the tank 60x60x53 cm (LxWxH). Gap between electrodes: 5 to 15 mm. Max stored energy - to 35 kJ. Time (shock risetime): 530 ns.

RADIOSS model definition

- 2D axisymmetric
- QUAD elements 0.5x0.5 mm
- Gap is 15 mm,
- deposited energy 327 J

SESAME law presentation

Ρ

Evolution of the bubble

Pressure wave propagation

Interaction with aluminium foil

Optimization: reflector

Possible mechanical amplification of shock waves – an ellipsoidal reflector.

Indirect velocimetry calibration of pressure gage

Transition vers laser

Shock waves generated by laser, PPRIME

Velocity Interferometer System for Any Reflector (VISAR)

Shock calibration

Pressure simulation by inverse analysis

2D model with hydro water law and alu 50 mum: pressure varied to feet experimental velocity profile, and then initial energy E₀.

Bubble pictures

 $t0 + 190 \,\mu s$ $t0 + 210 \,\mu s$ $t0 + 240 \,\mu s$ $t0 + 270 \,\mu s$ $t0 + 300 \ \mu s$ $t0 + 330 \,\mu s$

Figure 4: Dynamic of a vapour bubble created by optical cavitation in a large aquarium obtained with high speed camera (100000 frames per second, original images size 128x32 pixels), created with Nd:Yag laser ($\lambda =$ 532 nm, $E_{max} = 800 \text{ mJ}, \tau = 9 \text{ ns}).$

Bubble pictures

 $t0 + 60 \ \mu s$

INSTITUT

 $t0 + 80 \,\mu s$

 $t0 + 100 \ \mu s$

 $t0 + 120 \,\mu s$

 $t0 + 160 \,\mu s$

Figure 5: Dynamic of a vapour bubble created by optical cavitation in a plexiglass spherical container (R_{int}) = 6.55 mm) obtained with high speed camera (100000 frames per second, original images size 128x32 pixels), created with Nd:Yag laser ($\lambda = 532 \text{ nm}, E_{max} = 800 \text{ mJ}, \tau = 9 \text{ ns}$).

Conclusions and perspectives

INSTITUT

Annexes

AIDER project: «Application Industrielles des Décharges dans l'Eau pour le Recyclage»

PAPREC Groupe, La Courneuve:

Independent French specialist in recycling (papers, cartons, confidential archives, plastic, industrial garbage, metals, wood, batteries, vehicles etc.)

Ingénierie Electrotechnique Systèmes de Fortes Puissances

International Technologies for High Pulsed Power, Thegra:

Realization of the prototypes for clients tests in research and defence.

PPRIME Institute (CNRS-ENSMA), Poitiers:

LMPM + LCD

Bmax (I-Cube research), Toulouse:

Expertise and research in forming, welding and crimping using extreme deformation speeds.

Different ways to load energy, EMA Multi-physics

Pressure evolutions for different loadings of energy

1) Energy loading in the water

2) Temperature loading at boundary elements

3) Time-depended energy at boundary elements

Pressure near contact zone

Modeling 2D case

Demonstrator ITHPP

