

Gas Dynamics In High-Power Impulse Magnetron Sputtering

Comprendre le monde, construire l'avenir®

Tiberiu MINEA¹

tiberiu.minea@u-psud.fr

<u>Daniel LUNDIN¹</u>, Jón Tómas Guðmundsson^{1,2,3}, Nils BRENNING^{2,1}

 ¹Laboratoire de Physique des Gaz et Plasmas – LPGP: UMR 8578 CNRS, Université Paris-Sud, 91405 Orsay, France
 ²Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
 ³University of Iceland, IS-107 Reykjavik, Iceland

dépasser les fror

(ions TARGET)

Magnetron Sputtering:

- **B** field
- Confinement of e⁻
- Low pressure & Better sputtering rate

Rochelle

Outlook

- **1. HiPIMS plasma operation**
 - self-sputtering regime versus gas recycling regime
- 2. Neutral gas dynamics in HiPIMS plasmas
 - OD IRM (Ionization Region Model)
 - 2D DSMC
- **3.** Ion dynamics in HiPIMS plasmas
 - OD IRM
 - 2D OHiPIC (Orsay High density Particle in Cell)
- 4. Conclusions

1- HiPIMS plasma operation

self-sputtering regime vs. gas recycling regime

Huo et al., PSST 23 025017 (2014)

T. Minea

A. Anders et al., J. Phys. D. Appl. Phys. 45 012003 (2012)

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La

Rochelle

Initial picture

Self-sputtering parameter Cu @ Ar

> $\alpha_{t} = 0.8,$ $\beta_{t} = 0.7,$ and $Y_{SS} = 0.5$

$$\pi_{\rm SS} = \alpha_{\rm t} \beta_{\rm t} Y_{SS}.$$

 α : ioniz. prob. β : return prob. Y_{ss} : self-sputtering yield

A. Anders et al., J. Phys. D. Appl. Phys. 45 012003 (2012)

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La Rochelle PARIS

Comprendre le monde,

T. Minea

lons recycling

$$0 < a < 1,$$
$$\sum_{n=1}^{\infty} a^n = a/(1-a)$$

$$I_{\rm SS} = I_{\rm g} \left(\frac{Y_{\rm g}}{Y_{\rm SS}} \frac{\pi_{\rm SS}}{(1 - \pi_{\rm SS})} \right)$$

$$I_{g} = I_{prim} + I_{gas-recycle} = I_{prim}(1 + \frac{\pi_{g}}{1 - \pi_{g}})$$

Target current by **metal ions**

Total discharge current on the target I_D

$$I_{D} \approx I_{i} = I_{prim} + I_{gas-recycle} + I_{SS} = I_{prim} \left(1 + \frac{\pi_{g}}{1 - \pi_{g}} \right) \left(1 + \frac{Y_{g}}{Y_{SS}} \frac{\pi_{SS}}{(1 - \pi_{SS})} \right)$$
$$\equiv I_{prim} \Pi_{gas-recycle} \Pi_{SS-recycle}.$$

Brenning et al., PSST 26 (2017) 125003

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La Rochelle

Comprendre le monde

HiPIMS discharge regime analysis

Dimensionless contribution to I_D

Carbon

 $I_{\rm crit} = 0.38 \, S_{\rm RT} p_g = 3.9 \, {\rm A}$

$$\Pi_{\rm SS-recycle} \leq \left(1 + \frac{Y_{\rm g}}{Y_{\rm SS}} \frac{Y_{\rm SS}}{1 - Y_{\rm SS}}\right)$$

$$= \left(1 + \frac{0.69}{0.52} \times \frac{0.52}{1 - 0.52}\right) = 2.4$$

 $\Pi_{SS-recycle} > 2$ means that the carbon-ion current I_{SS} is larger than the gas-ion current.

But **I**_D increases by **16** times!!!

Gas recycled is needed!!!

T. Minea

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La

Rochelle

Brenning et al., PSST 26 (2017) 125003

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La

Rochelle

Conclusion on HiPIMS operation

- High Current operation is not necesserily due to the selfsputtering in noble gas operation
- In reactive mode :

* Metal mode: self-sputter recycling dominates, but only half of the discharge current is carried by recycled metal ions (Ti⁺). Ar⁺ ion current recycled even smaller is present

* Poisoned mode: gas recycling is the dominant process 2/3 of Ar⁺ ions are recycled

- During gas recycling T_e increases and then I_D .
- The self-sputtering mode can really lead to the discharge current runaway!

2 - Neutral gas dynamics in HiPIMS plasmas

IRM (Ionization Region Model)

- OD plasma modeling
- 2D DSMC

Background of IRM (Ionization Region Model) **0D HiPIMS Modeling**

IRM approach

IRM assumptions

- e- are in Maxwell equilibrium (T_e)
- Averaged plasma parameters over the IR volume
- β and F_{PWR} are locked by experimental
 U_D(t) and I_D(t);

IRM INPUT

- U(t), I(t);
- Gas (Ar) T_{Ar} , $p \Rightarrow n_{Ar}$
- Target : Ti, γ

M. Raadu et al., P S S T. 20 065007 (2011)

C. Huo et al., P S S T 21 045004 (2012)

T. Minea

14e Journée Reseau Plasma

Rock

Species included in R-IRM

Reactive - Ionization Region Model

Ti target in Ar/O₂ mixture

Comprendre la monde construire l'avenire

PARIS

Global model: Balance equations for the main plasma species

- Electrons (hot & cold)
- Argon atoms in the ground state
 - Warm argon atoms diffusing from the target at target temperature
 - Hot Ar atoms sputtered out at a few eV
- *Metastable* Ar, $Ar^m (1s_5 and 1s_3) (11.6 eV)$
- Argon ions Ar⁺ (15.76 eV)
- Titanium *atoms* Ti
- Titanium *ions* Ti⁺ (6.83 eV), Ti²⁺ (13.58 eV)
- Oxygen molecules in the ground state O₂
- *Metastable* oxygen molecules O₂(a¹delta) (0.98 eV) and O₂(b¹sigma) (1.627 eV)
- Oxygen atoms in the ground state O(³P)
- *Metastable* oxygen atoms O(¹D) (1.96 eV)
- Positive ions O₂⁺ (12.61 eV) and O⁺ (13.62 eV)
- Negative ions O⁻

R-IRM results - neutrals

Metal mode

- Gas rarefaction Ar ~ 50%
- Gas *depletion* O₂ ~ 75%
- n_{Ti} > n_{O2}

T. Minea

Poisoned mode

- Gas rarefaction Ar ~ 85%
- Gas *depletion* O₂ ~ 80%

n_{Ti} < n_{O2}

Gas rarefaction in HiPIMS by DSMC

Direct Simulation Monte Carlo

• Neutral plasma gas rarefaction occurs after 50 μs !

Kadlec. P Phys Polym 4 (2007) S419

PARIS

Comprendre le monde, construire l'avenire

time (µs)

• Neutral plasma gas rarefaction occurs after 50 μs !

IRM: Stancu et al. . PSST 24 (2015) 045011

What can we learn on neutral gas dynamics in HiPIMS from 0D modeling ?

- Current ion composition !
- High current on the target means high erosion !
- Energetic particles coming from the target drag the gas out of the ionization region (wind effect) !
- Gas refilling from the undisturbed volume !

3 - Ion dynamics in HiPIMS plasmas

OHiPIC (Orsay High density Particle in Cell)

OD IRM modeling

2D plasma modeling

R-IRM results - ions

Metal mode

Minea

- Ar⁺ and Ti⁺ ions dominate
- Ti²⁺ ions have an order of magnitude lower density
- The O₂⁺ and O⁺ ion densities much lower

Poisoned mode

- Ar⁺ ions dominate the discharge
- Ti⁺ and O⁺ similar densities
- The Ti²⁺ ion density low, but increases towards end of pulse

Lundin et al., J. Appl. Phys. 121(17) (2017) 171917

R-IRM results current contributions

Metal mode 80 80 Discharge current contributions [A] Discharge current contributions [A] l_D total _ total 70 70 I_D Ar – I_ Ar⁺ 60 60 _ Ti ••I_D Ti[†] 50 50 I_D Ti²⁺ -• I_ Ti²⁺ -- I_D O₂* 40 40 _ O_ Flat current ---- I_D O⁺ _ 0 30 30 $I_{\rm p}$ seI_ se Triangular current 20 20 10 10 0 0 100 200 0 100 200 300 400 500 0 300 t [μs] t [µS]

Metal mode

- 50/50 of Ar⁺ and Ti⁺
- Gas-sustained self-sputtering
- 4% Ti²⁺

T. Minea

Gas-sustained SS: C. Huo et al., PSST 23 (2014) 025017

Lundin et al., J. Appl. Phys. 121(17) (2017) 171917

400

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La

•

Poisoned mode

10% O+

Mainly Ar⁺ (80%)

Rochelle

500

Poisoned mode

What can we learn on ions dynamics in HiPIMS from 0D modeling ?

- Current rise means gas / metal ionization !
- Ion back-attraction fraction ($\beta = 0.1 0.8$) !
- Estimation of the ion flux towards the substrate !

$$F_{flux} = \frac{\int_{pulse} \Gamma_{Ti^+}(t) dt}{\int_{pulse} \left(\Gamma_{Ti^+}(t) + \Gamma_{Ti}(t)\right) dt}$$

Substrate

DR

2D OHIPIC model

Orsay HIgh density plasma Particle-In-Cell model

Debye length in HiPIMS

 $n_{\rm e} > 10^{13} \,{\rm cm}^{-3} > 10^{19} \,{\rm m}^{-3} => \lambda_{\rm e} \approx 10 \,{\mu}{\rm m} \,(T_{\rm e} = 4 {\rm eV})$

Geometry (x, z), periodic in y Cell dimensions: Δx , $\Delta z = 10 \ \mu m \parallel \parallel$ Simulation volume: 2 x 2.5 cm² Grid: > 10⁶ nodes 10⁷ macro particles; 3D trajectories Control parameters

Time step: $\Delta t = 5 \times 10^{-12} \text{ s} \div 5 \times 10^{-11} \text{ s}$

Simulated real time: 15 µs !!!

Simplified gas kinetics

Ar^m, Ar⁺ produced by e⁻ impact

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La Rochelle

omprendre le monde

T. Minea

HiPIMS current experiment *versus* simulation

3

2.4

1.8

1.2

0.6

0

Current (A)

OHIPIC results compared to HiPIMS experiment

Revel et al, PSST (2018) on line

9

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La Rochelle

HiPIMS Plasma Evolution

 $R = 1 k\Omega$

Revel et al, PSST (2018) on line

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La Rochelle

 $U_{CS} > U_{IR}$ @ pulse beginning or high I_D, else $U_{CS} < U_{IR}$

eedf and iedf by OHIPIC

- *eedf* shows two electron populations,
 one thermalized and one following the cathode voltage
- ✓ Plasma ions energy is uniformly distributed over the U_D(t) range

PARIS

Comprendre le monde,

What we learn from the ion dynamics by 2D OHIPIC

- The time delay in the current rise is due to the build-up of the space charge (ionization)
- Ion erosion is radially larger in HiPIMS than in DC mode
- Ion energy covers all the interval between 0 and the applied voltage
- Ion are accelerated in the voltage drop over the ionization region and further in the sheath
- Ion flux at the cathode and substrate can be evaluated

General Conclusion

on gas dynamics from HiPIMS modeling

✓ The power balance between *sheath* and *IR* as well as the *ion back-attraction* are effectively captured by global **OD IRM**

✓ **Global HiPIMS** plasma behavior is understood, either for noble gas or reactive mixtures

 ✓ 2D particle modeling give access to charged species evolution (densities, fluxes), but also *eedf* and *iedf*

✓ Good coherence between **IRM** and **OHIPIC** allows to apprehend for the first time the spokes by modeling

 \checkmark Gas rarefaction can be captured by IRM and DSMC, but it plays for pulses longer than 50 μs or for very high currents

23-27 September 2019

Antibes, French Riviera

3 CONGRESSES MERGED IN 1

Thank you!

A C C E S S I B I L I T Y

14e Journée Reseau Plasma Froid / Oct. 16, 2018 / La

T. Minea

 $\Pi_{SS-recvcle} \approx 1.09$

Se

 $\Pi_{gas-recycle} \approx 3.08$

$$\Pi_{SS} = \alpha_0 \beta Y_{SS} = 0.35 \times 0.90 \times 0.25 \approx 0.03$$

$$a_{1} = \alpha_{0}\beta V_{1} = 0.35 \times 0.90 \times 0.25 \approx 0$$

Gas recycling

 $\Pi_{gas} = \alpha_{GA,recycle} \beta \xi_{pulse} = 0.75 \times 0.90 \times 1 \approx 0.68$

Recycled ions in poisoned mode

Reactive HiPIMS (Ti @ Ar/O₂)

PARIS

High Power Impulse Magnetron Sputtering (HiPIMS)

Construire l'avenire

50

40

30

20

10

0

SHORT & FAST Pulsed generator concept which uses

- preionization to guarantee the fast rise time of the current,
- fast fall time of the discharge voltage at the switch-off

ournée Reseau Plasma Froid / Oct. 16, 2018 / La Rochelle